翻訳と辞書 |
Noncommutative Jordan algebra : ウィキペディア英語版 | Noncommutative Jordan algebra In algebra, a noncommutative Jordan algebra is an algebra, usually over a field of characteristic not 2, such that the four operations of left and right multiplication by ''x'' and ''x''2 all commute with each other. Examples include associative algebras and Jordan algebras. Over fields of characteristic not 2, noncommutative Jordan algebras are the same as flexible Jordan-admissible algebras,〔Okubo (1995) pp.19,84〕 where a Jordan-admissible algebra, introduced by and named after Pascual Jordan, is a (possibly non-associative) algebra that becomes a Jordan algebra under the product ''a'' ∘ ''b'' = ''ab'' + ''ba''. ==See also==
*Malcev-admissible algebra *Lie-admissible algebra
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Noncommutative Jordan algebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|